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I. EXPERIMENTAL METHODS

The particle is optically trapped at the focus of a NA=0.85 objective (Olympus LCPLN100XIR)

using a high-power near-infrared laser beam (Coherent Mephisto MOPA up to 7 W,

λ = 1064 nm). The laser power is tuned using an acousto-optics Modulator (AA Opto-

Electronic MT110-A1.5-IR) driven with a fast arbitrary wave generator (Spectrum In-

strumentation M4i.6621-x8). The particle dynamics are measured with a common path

interferometer using an ancillary laser beam (Laser Quantum GEM, λmeas = 532 nm,

Pmeas ≈ 7 mW) and a quadrant photodetector (Hamamatsu S4349). The 3D dynamics

of the particle is recorded onto a digital scope (Picoscope 4824A) at 5 MSamples/s. The

particle position x(t) is corrected by subtracting its mean value at equilibrium after each

protocol realization, to eliminate experimental drifts.

II. DAMPING Γ OF LEVITATED PARTICLES

For a spherical particle of radius r in a rarefied gas, the damping rate Γ is directly

proportional to the gas pressure pgas [1]:

Γ = 0.619
9√

2πρSiO2

√
M

NAkBT

pgas
r

, (S1)

where ρSiO2 ≈ 2200 kg/m3 is the silica density, M the molar mass of air, T the environment

temperature.

Considering the silica particle used in the main text, of expected radius r = 73 nm as

given by the provider (microParticles GmbH), we find a damping rate Γtheo = 2π× 3.8 kHz

at a pressure pgas = 5 hPa.

Experimentally, this damping can be measured for pressures above a few hPa directly

from the linewidth of the particle dynamics power spectral density [1], or alternatively, as

discussed in the main text, from the relaxation time in a STEP protocol.

Using the second approach, we find Γexp = 2π×3.1 kHz. This result is in good agreement

with the expected value Γtheo.
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III. OVERDAMPED ESE PROTOCOLS

tf

Supplementary Figure S1. Overdamped STEP (blue) and ESE (orange) compression protocols

for the z-axis of an optically trapped particle in air. The purple dashed line correspond to an

exponential fit, giving a relaxation time tz = 11.5 µs.

As mentioned in the main text, and detailed in the Supplementary Note S1, our experi-

mental apparatus allows to easily change the damping condition by tuning the gas pressure

inside the vacuum chamber. This allows to address ESE protocols for a broad range of damp-

ing conditions. Specifically, it is possible to study overdamped protocols [2]. As a proof of

principle, figure S1 shows the case of an overdamped compression with χ = 1.4 for the z-

axis, realized at ambient pressure pgas = 105 hPa (Γ = 2π× 570 kHz ≫ ωf
z = 2π× 92 kHz).

The reference STEP protocol (in blue) shows the expected position relaxation time toward

equilibrium tz = Γ

(ωf
z )2

. The ESE protocols (orange) allows us to shortcut the equilibration

time by a factor 4, to tf = 8 µs.
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IV. ESE PROTOCOLS FOR COMPRESSION

(a)

(b)

(c)

(d)

Supplementary Figure S2. (a) Evolution of the trap stiffness for a harmonic compression in the

case of a STEP protocol (blue line) and an ESE protocol corresponding to χ = 1.4 and tf = 26 µs

(5-fold speed-up)(orange). (b) and (c) Evolution of the standard deviation in position σx (b) and

velocity σvx (c) for the STEP (blue) and the ESE protocol (orange) presented in (a). The black

dotted vertical line corresponds to the final time tf = 26 µs of the ESE protocol. (d) Evolution of

α, β and δ (as defined in text) during the out-of-equilibrium regime of the ESE protocol pictured

in (a). The experimental values (blue) are compared with those calculated for the ESE protocol

(dashed red line).
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V. EVOLUTION OF VARIANCE FOR STEP PROTOCOLS

Let’s consider a 1D harmonic potential, along the x axis, defined by its angular frequency

ω(t). A particle of mass m is trapped in the harmonic potential at a temperature T0, and

the system damping is Γ. We introduce
σxx = ⟨x2⟩ − ⟨x⟩2

σxv = ⟨xv⟩ − ⟨x⟩⟨v⟩

σvv = ⟨v2⟩ − ⟨v⟩2

These quantities are coupled through the linear system [3]:

d

dt


σxx

σxv

σvv

 =


0 2 0

−ω2 −Γ 1

0 −2ω2 −2Γ



σxx

σxv

σvv

+


0

0
2kBT0Γ

m

 (S2)

We address a STEP protocol, where the trap frequency is suddenly changed from ωi to

ωf =
√
χωi at t = 0. Following the main text notation, χ is the expansion factor. Solving

this set of equations for the initial conditions σxx(0) = σi and σvv(0) = σiω
2
i leads to

σxx(t) = σi
χ− 1

χ

[
2ω2

f

Ω̃2
+

2ω2
f − Γ2

Ω̃2
cos Ω̃(t− t0) +

Γ

Ω̃
sin Ω̃(t− t0)

]
e−Γ(t−t0) +

σi

χ
, (S3)

with Ω̃ =
√
4ω2

f − Γ2. We note, that for the deep underdamped regime ωf ≫ Γ, as verified

in the main text, then

σxx(t) = σi
χ− 1

2χ
[1 + cos (2ωf t)] e

−Γt +
σi

χ
. (S4)

The oscillation frequency observed during the STEP protocols is then twice the natural final

frequency of the trap ωf .

Experimentally, we fit the experimental data computed for the position variance σxx = σ2
x

using equation (S3), with Γ and ωf as free parameters. The results are presented in figure S3.

In the main text (Figure 2(b)), we plot the square-root counterpart, to depict the position

standard deviation σx.
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Supplementary Figure S3. Position variance σxx (black line) during a STEP protocol and associated

fit. The fit allows us to determine the values of ωrelax = 2ωf and Γ. The timebase has been corrected

to enforce t0 = 0 µs.

VI. KURTOSIS FOR STEP AND ESE PROTOCOLS

Supplementary Figure S4. Kurtosis of ρ(x) and ρ(vx) during STEP and ESE protocols

The kurtosis of the particle distribution along the position x axis ρ(x) and velocity axis

ρ(vx) during STEP and ESE protocols is shown in figure S4. The measured kurtosis remains

very close from 3, demonstrating that, if existing, deviation from Gaussianity remains small.

VII. LINK BETWEEN THE ESE VARIABLES AND THE VELOCITY AND PO-

SITION VARIANCE

The shortcut protocols used in the main text enforce a probability density for the system

of the form

ρ(x, v, t) = N0 exp(−(α(t)x2 + β(t)v2 + δ(t)xv)) (S5)
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For such a distribution, one can compute the quantities σxx, σvv and σvx. We can thus

determine the value of α, β and δ :

α =
σvv

2(σvvσxx − σ2
xv)

, β =
σxx

2(σvvσxx − σ2
xv)

δ =
−σxv

(σvvσxx − σ2
xv)

In the main text (Figure 2(d)), we thus reconstruct the PDF of the system during the

ESE process, by computing the values of α, β and δ from the position variance σxx, the

velocity variance σvv and the cross-correlated term σxv.

Conversely, if α, β and δ are known, one can compute the values of σx and σvx as shown

in figures 2b and c of the main text.

VIII. DEFINITION OF THE ESE PROTOCOLS

A. The “protocol A” solution

The ESE protocols used in the main text are the type defined as ”protocol A” in refer-

ence [4]. The idea behind this work is to engineer the evolution of the distribution

ρ(x, vx, t) = N(t) exp(−(α(t)x2 + β(t)v2x + δ(t)xvx)) , (S6)

via the control parameter ktrap. Injecting this Ansatz into the Fokker-Planck equation:

∂ρ

∂t
+ vx

∂ρ

∂x
− ktrap

m
x
∂ρ

∂vx
=

Γ

m

∂vxρ

∂vx
+

ΓkBT

m2

∂2ρ

∂v2x
, (S7)

provides a set of non-linear equations linking the rescaled functions

κ̃ =
ktrap
ki

α̃ =
2kBT

ki
α

β̃ =
2kBT

ki
β

δ̃ =
2kBT

ki
δ

expressed in rescaled time s = t/tf .

Introducing the auxiliary quantity

∆̃ = (α̃− δ̃2

β̃
)β̃ , (S8)
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allows rewriting the aforementioned functions in terms of ∆̃. Thus, to define a protocol,

all that is needed is to find a ∆̃ which satisfies the boundary conditions on α̃, β̃ and δ̃, in

particular α̃(1) = ∆̃(1) = χ. In reference [4], to ensure continuity of the control parameter

ktrap, the two first derivative of ∆̃ are taken to be 0 in s = 0 and s = 1.

Finally, the control parameter ktrap = ki · κ̃ is then fully defined as:

κ̃ =
˙̃α

2ωiδ̃
+

Γ

ωi

δ̃ , (S9)

Following Chupeau et al. [4], we look for a polynomial solution for ∆̃. The lower order

admissible polynomial is then:

∆̃(s) = 1 + (χ− 1)(35s4 − 84s5 + 70s6 − 20s7) . (S10)

All the ESE protocols shown in the main text are based on this approach.

B. Alternative ESE protocols

Nevertheless, we note that the choice of ∆̃(s) is arbitrary, and one could imagine using a

different function, a higher order polynomial, or a different basis for the decomposition. For

instance, one can use a sinusoidal basis. The lower admissible order then leads to

∆̃sin(s) =
1 + χ

2
+ 9

1− χ

16
cos(πs)− 1− χ

16
cos(3πs) . (S11)

Experimentally, using this protocol provides similar results to those obtained with the poly-

nomial Protocol A described previously.
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IX. HEAT AND WORK FOR THE USED PROTOCOLS

From the particle time traces, we can compute the cumulative heat

⟨Q(t)⟩ = −
∫ t

0

k(t′)⟨xvx⟩dt′ −
[
1

2
m⟨v2x⟩

]t
0

= ⟨Qx(t)⟩+ ⟨Qv(t)⟩ , (S12)

and the cumulative work

⟨W (t)⟩ =
∫ t

0

1

2
k̇(t′)⟨x2⟩dt′ , (S13)

exchanged between the system and the environment for the STEP and the shortcut protocol

presented in figure 2 of the main text. The results are shown in figure S5.

In the case of a STEP protocol, the cumulative work is estimated from its theoretical

value

⟨W (t)⟩ = χ− 1

2
kBT (S14)

for any positive time.

Supplementary Figure S5. Heat and work for a STEP protocol (a) and the equivalent shortcut

ESE protocol presented in the main text (b). The work for the STEP protocol is obtained from

Eq. (S14).
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X. RELAXATION ALONG THE y-AXIS
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Supplementary Figure S6. Relaxation along the y-axis for the STEP (blue) and ESE (orange)

protocols, the latter targeting acceleration equilibration along the x-axis to tf = 26 µs, as shown

in figure 3a in the main text. As for the z-axis, relaxation to equilibrium is observed in the target

time for moderate speed-up (here 5-fold).

XI. STATE-TO-STATE PROTOCOLS ROBUSTNESS

To address the robustness of a transformation protocol defined for a reference system, we

propose to characterize how close from equilibrium ends an arbitrary system submitted to

this protocol.

To characterize this distance to equilibrium between the system distribution at the end

of the protocol p(x, v) and the equilibrium distribution q(x, v), we use the Kullback–Leibler

divergence D(p||q). This estimator is defined as

D(p||q) =

∫∫
dxdv p(x, v) ln

(
p(x, v)

q(x, v)

)
, (S15)

and can be seen as a statistical distance between the two distributions p and q.

In the present paper, we are interested in the efficiency of an ESE protocol defined for

a system of natural frequency ωref applied to a system of frequency ω (the second axis in

the main text). We thus determine the ESE protocol corresponding to a system of natural

frequency ωref and damping Γ, and for a final time tf . We then numerically compute the

evolution of the distribution

ρ(x, vx, t) =

√
4α(t)β(t)− δ(t)2

2π
e−α(t)x2−β(t)v2−δ(t)xv (S16)
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of a system of frequency ω submitted to the protocol (same damping, same final time).

This is done by numerical integration of the set of equations (14) in reference [4]. We thus

compute the final value of the distribution p(x, v) = ρ(x, vx, tf )

By considering the equilibrium target distribution

q(x, v) = ρeq(x, vx, tf ) =
mωχ

πkBT
exp

(
−χ

mΩ2
i

kbT
x2 − m

kbT
v2
)
, (S17)

one can write the Kullback-Leibler divergence as:

D(p||q) =
1

2
ln

[
4αβ − δ2

4αeqβeq

]
− (α− αeq)σf

xx − (β − βeq)σf
vv − δσf

xv , (S18)

where 
σxx = ⟨x2⟩ =

2β

4αβ − δ2

σvv = ⟨v2⟩ =
2α

4αβ − δ2

σxv = ⟨xv⟩ =
−δ

4αβ − δ2

The Kullback-Leibler divergence for the ESE protocols as a function of the final time tf

and the frequency difference ω/ωref is shown in figure S7-(a).

10 2 10 1 100

tf/tv

10 2

10 1

100

101

/
p
ro
t

10 11

10 9

10 7

10 5

10 3

10 1

101

D
(p
||
q
)

10 2 10 1 100

tf/tv

10 2

10 1

100

101

/
p
ro
t

10 11

10 9

10 7

10 5

10 3

10 1

101

D
(p
||
q
)

(a) (b)

Supplementary Figure S7. Kullback-Leibler divergence for the ESE protocols as a function of the

final time tf and the system frequency ω. (a) Protocol used in the main text. (b) Alternative

sinusoidal protocol defined by equation S11.

A couple of interesting features are observed. First, the protocols are more robust for

moderate acceleration, as discussed for experimental data in the main text. Then, the

evolution of the Kullback-Leibler divergence is non-monotonic, and we observe a coupling

between frequency and final time impacting protocol robustness. As a consequence, for a

given system frequency ω, tuning the final time to reach a state closer to equilibrium could

be interesting.
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To discuss the universality of these features, we apply the same procedure for the protocols

defined in the previous part, which use a sinusoidal decomposition for the ∆ function (see

equation S11). The results are presented in figure S7-(b), demonstrating the same properties,

with a worse protocols efficiency for decreasing final time and the non-monotonic behaviour

of the Kullback-Liebler divergence.

Finally, we demonstrate that Kullback-Leibler divergence could be a strategy to char-

acterize the robustness of state-to-state protocols. If the two proposed protocols share the

same limitation to moderate speed-up, our strategy could be used to discuss other protocols,

both for swift equilibration and optimization protocols [5].
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